Application Security #1, #2, & #3 (section 3.1.1 & 3.7.1)
February 1, 2011

The left column indicates whether the standard is listed in the Information Security Plan as a **Must** or **Should**. A justification must be written for any standard not followed in the department procedures. The justification must be approved by the IT Manager for items listed as a **Should** and also reviewed with the IT Security Office if the item was listed as a **Must**. The IT manager must review, sign and date, all exceptions every six months to indicate that the exception is still necessary.

Protected Level 1 data consists of:

- Account passwords or credentials.
- PINs (Personal Identification Numbers).
- Private key (digital certificate).
- Name with credit card number.
- Name with Tax ID.
- Name with driver's license number, state identification card, and other forms of national or international identification.
- Name with birth date combined with last four digits of SSN.
- Medical records related to an individual (including disability information).
- Psychological counseling records related to an individual.
- Name with bank account or debit card information with any required security code, access code, or password that would permit access to an individual's financial account.
- Name with personally identifiable information:
 - Mother’s maiden name.
 - Employee net salary.
 - Employment history (including recruiting information).
 - Biometric information.
 - Electronic or digitized signatures.
 - Names of parents or other family member.
 - Birthplace (city, state, country).
 - Race and ethnicity.
 - Gender.
 - Marital status.
 - Personal characteristics.
 - Physical description.

<table>
<thead>
<tr>
<th>M/S</th>
<th>Item</th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1. For applications containing protected level 1 or mission-critical information, managers must ensure that the software development process is documented and approved before implementation.</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>2. Requirements Analysis:</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>❖ IT support staff need to be able to state not only what the system should do but also what it should not do.</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>❖ Specific security objectives need to be defined and translated into concrete requirements</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3. Design: The priority in the translation of requirements to application functionality is to ensure the incorporation of security principles</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>❖ FIPS-140 approved algorithm for encryption.</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>❖ Password key strength for encryption processes selected and changed</td>
<td></td>
</tr>
</tbody>
</table>
according to section 3.6

- Key escrow including secure storage and recovery if key is lost or forgotten
- Use of secure network protocols (such as IPSec, SSL, or Secure RPC)
- Mechanisms for authentication and access control
- Mechanisms for implementing the rules for all forms of information input and interaction

4. Implementation: controls need to be in place to catch improper implementation procedures

- Error handling
- Coding standards available to all developers
- Input validation
- Cross check code and unit testing
- Prioritize defects and assign timelines for rewrite/retest

5. Testing: focused on what should not happen

- Attention to the software’s operating environment (network connections, configuration, and customized set up) as well as the functional testing of security components
- Look for functionality that should not be there, such as unintentional side effects and behaviors that are not specified in the design or implementation test plans.

6. Deployment: Special attention to the software’s operating environment (network connections, configuration, and customized set up)

- Use security checklists to review configuration files
- Review enabled services and open ports
- Review access to sensitive files and directories
- Ensure that logging is enabled for forensics and incident response

7. Maintenance: review proposed changes in terms of risks that they impose on the overall security of the system, and maintain documentation tracing back to the appropriate configuration management process.

- Changes required be validated and verified through the Implementation, Testing & Deployment cycles
- Change management procedures can be used to track & document changes
- Consider a consulting company to perform code checks for potential vulnerabilities

8. Commercial or legacy systems

- Ensure that IT support staff investigate security issues with implementation of commercial-off-the-shelf (COTS) software prior to procurement
- Who will have access to the system and in what capacity
- How the system will be used
- Will the system contain protected information
- What are potential threats to the system or system information
- IT support staff research security implementation of the COTS software
 - http://security.sdsu.edu/iso/pdfs/App_Attacks_and_Countermeasures.pdf
- Not using default passwords
- Securely configuring file and access permissions
- Shutting down unneeded services
<table>
<thead>
<tr>
<th></th>
<th>IT Manager analyze the results of the security research and identify controls and countermeasures that may be required to lower risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>o Contact the TSO if the assessment involves protected level 1 information</td>
</tr>
<tr>
<td>S</td>
<td>o Ensure that the final controls and configurations are appropriately documented in the system/application build documentation</td>
</tr>
</tbody>
</table>